Preliminary communication

Insertion into metal—carbon and hydrogen—carbon bonds; synthesis of Group VIA metal cyclopentadienylcarbonyl metallates and hydrides

S.A. KEPPIE and M.F. LAPPERT School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received July 30th, 1969)

A novel procedure (Eq.1) for the synthesis of compounds having metal-metal bonds is reported (see ref. 1 for earlier syntheses). This provides the first example of the insertion of a coordinatively unsaturated species into a metal-carbon σ -bond. There is formal similarity to reactions involving insertion into Group IV metal-halogen bonds². Compounds (II), with two exceptions [II, M = Cr and M' = Sn, m.p. 109°; II, M = Cr and M' = Ge, m.p. 86-88°]³, have been described in the literature⁴.

$$(MeCN)_{3}M(CO)_{3} + Me_{3}M' \longrightarrow \underbrace{\frac{M = Cr, Mo \text{ or } W}{M' = Ge \text{ or } Sn}}_{(I)} \pi - C_{5}H_{5}(CO)_{3}M - M'Me_{3} + 3MeCN \qquad (1)$$
(II)

Preliminary examination, by NMR of the Fe(CO)₅/THF/Me₃SnC₅H₅ system at 20° suggests that π -C₅H₅(CO)₂Fe-SnMe₃ is formed. Reactions of type (1) may have a wider generality. The requirements may be that (*i*) the reagent (I), or more broadly LM''-X, is capable of functioning as a nucleophile by virtue of the nature of X (π -bond- or lone pair- possessing), (*ii*) the M''-X bond is labile, and (*iii*) that the product, such as (II), is thermodynamically stable. For reaction (1), reactivity decreases for M' in (I) = Sn > Ge \geq Si.

As a test of this hypothesis, the reagent LM"-X was next chosen to be cyclopentadiene, $H-C_5H_5$, Under controlled conditions (see Table 1), this system (Eq. 2) is probably the most convenient for synthesis of the important Group VIA π -cyclopentadienylcarbonyl hydrides. King and Fronzaglia⁵ obtained the tungsten carbonyl hydride (32%) using reaction (2), and refluxing for several hours in n-hexane. The low yield was probably caused by thermal degradation of the hydride, although the choice of solvent is possibly significant.

$$(MeCN)_{3}M(CO)_{3} + C_{5}H_{6} \rightarrow \pi - C_{5}H_{5}(CO)_{3}MH + 3MeCN$$
(2)

Further illustration is provided by the following example and Table 1.

J. Organometal, Chem., 19 (1969) P5-P6

Reaction	M and M'	Optimal conditions (h/°)	Yield (%) ^a
Eq. 1	M = Mo, M' = Sn	6/65 b	75
Eq. 1	M = W, M' = Sn	6/65 b	60
Eq. 1	M = Cr, M' = Ge	2/65 ^b	10
Eq. 1	M = Mo, M' = Ge	4/65 b	21
Eq. 1	M = W, M' = Ge	4/65 b	49
Eq. 2	M = Cr	1/20 ¢	20
Eq. 2	M = Mo	14/50 C	65
Eq. 2	M = W	2/50 d	13
Eq. 2	M = W	16/69 ^e	32
Eq. 2	M = W	2/50 c	67

TABLE 1

^a % yield on M(CO)₆. ^b Refluxing THF as solvent; in CO atmosphere, ^c THF as solvent, ^d MeCN as solvent, ^e Refluxing n-C₆H₁₄ as solvent⁵.

Hexacarbonylmolybdenum(0) (13.13 g, 49.7 mmoles) and degassed acetonitrile (50 ml) were heated together under reflux (16 h), in a nitrogen atmosphere. After cooling, the excess of acetonitrile was removed $(20^{\circ}/10^{-3} \text{ mm})$, and replaced by degassed tetrahydrofuran (25 ml). To the stirred yellow suspension was added an excess of freshly distilled cyclopentadiene (5 ml), and the mixture stirred ($\frac{1}{2}$ h/50°) in a nitrogen atmosphere, to form a brown solution. Solvent removal $(20^{\circ}/10^{-3} \text{ mm})$ and slow sublimation $(40-80^{\circ}/10^{-3} \text{ mm})$ during 6 h) afforded vellow crystals of hydrido- π -cyclopentadienyltricarbonylmolybdenum(II) (7.95 g, 32.3 mmoles, 65% yield hased on Mo(CO)₆).

REFERENCES

- 1 Cf. N.S. Vyazankin, G.A. Razuvaev and O.A. Kruglaya, Organometal, Chem. Rev. A, 3 (1968) 323; F.G.A. Stone in E.A.V. Ebsworth, A.G. Maddock and A. Sharpe (Eds.), New Pathways in Inorganic Chemistry, Cambridge University Press, London, 1968, p.283; J.F. Young, Advan. Inorg. Chem. Radiochem., Vol. 11, Academic Press, New York, 1968, p. 92; M.C. Baird, Progress in Inorganic Chemistry, Vol. 9, Interscience, New York, 1968, p. 1.
 A.J. Layton, R.S. Nyholm, G.A. Pneumaticakis and M.L. Tobe, Chem. Ind., (1967) 465;
- R. Kummer and W.A.G. Graham, *Inorg. Chem.*, 7 (1968) 310, 1208.
 3 D.J. Cardin, S.A. Keppie and M.F. Lappert, J. Chem. Soc., A, in press.
- 4 D.J. Cardin and M.F. Lappert, Chem. Commun., (1966) 506; H.R.H. Patil and W.A.G. Graham, Inorg. Chem., 5 (1966) 1401; D.J. Cardin, S.A. Keppie and M.F. Lappert, Inorg. Nucl. Chem. Letters, 4 (1968) 365; A. Carrick and F. Glockling, J. Chem. Soc., A, (1968) 913.
- 5 R.B. King and A. Fronzaglia, Inorg. Chem., 5 (1966) 1837.

J. Organometal. Chem., 19 (1969) P5-P6